Tuesday, September 29, 2015

Page 453

Problem 5

Problem. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by $y = x^2$, $y = x^5$ about the x-axis.

Solution. The inner radius is $R_1(x) = x^5$ and the outer radius is $R_2(x) = x^2$. The extremities are x = 0 and x = 1. So the volume is

$$V = \int_0^1 \pi \left((x^2)^2 - (x^5)^2 \right) dx$$

= $\pi \int_0^1 \left(x^4 - x^{10} \right) dx$
= $\pi \left[\frac{1}{5} x^5 - \frac{1}{11} x^{11} \right]_0^1$
= $\pi \left(\frac{1}{5} - \frac{1}{11} \right)$
= $\frac{6\pi}{55}$.

Problem 6

Problem. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by y = 2, $y = 4 - \frac{x^2}{4}$ about the x-axis.

Solution. The inner radius is $R_1(x) = 2$ and the outer radius is $R_2(x) = 4 - \frac{x^2}{4}$. The

extremities are x = -3 and x = 3. So the volume is

$$\begin{split} V &= \int_{-3}^{3} \pi \left(\left(4 - \frac{x^{2}}{4} \right)^{2} - 2^{2} \right) \, dx \\ &= \pi \int_{-3}^{3} \left(\left(16 - 2x^{2} + \frac{x^{4}}{16} \right) - 4 \right) \, dx \\ &= \pi \int_{-3}^{3} \left(12 - 2x^{2} + \frac{x^{4}}{16} \right) \, dx \\ &= \pi \left[12x - \frac{2}{3}x^{3} + \frac{1}{80}x^{5} \right]_{-3}^{3} \\ &= \pi \left[\left(36 - \frac{2}{3} \cdot 3^{3} + \frac{1}{80} \cdot 3^{5} \right) - \left(12x - \frac{2}{3}(-3)^{3} + \frac{1}{80}(-3)^{5} \right) \right] \\ &= \pi \left[\left(18 + \frac{243}{80} \right) - \left(-18 - \frac{243}{80} \right) \right] \\ &= \pi \left(36 + \frac{486}{80} \right) \\ &= \frac{1683\pi}{40}. \end{split}$$

Problem 11(b)

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$y = \sqrt{x},$$
$$y = 0,$$
$$x = 3$$

about the *y*-axis.

Solution. Because we are revolving about the y-axis, we should write our functions as functions of y. So we have $x = y^2$. Now, the inner radius is $R_1(y) = y^2$ and the outer radius is $R_2(y) = 3$. The extremities are y = 0 and $y = \sqrt{3}$. So the volume is

$$V = \int_{0}^{\sqrt{3}} \pi \left(3^{2} - (y^{2})^{2}\right) dy$$

= $\pi \int_{0}^{\sqrt{3}} \left(9 - y^{4}\right) dy$
= $\pi \left[9y - \frac{1}{5}y^{5}\right]_{0}^{\sqrt{3}}$
= $\pi \left(9\sqrt{3} - \frac{1}{5} \cdot 9\sqrt{3}\right)$
= $\frac{36\pi}{5}$.

Problem 11(d)

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$y = \sqrt{x},$$
$$y = 0,$$
$$x = 3$$

about the line x = 6.

Solution. The inner radius is from x = 6 to x = 3, so $R_1(y) = 6 - 3 = 3$ and the outer radius is $R_2(y) = 6 - y^2$. The extremities are y = 0 and $y = \sqrt{3}$. The volume is

$$V = \int_{0}^{\sqrt{3}} \pi \left((6 - y^2)^2 - 3^2 \right) dy$$

= $\pi \int_{0}^{\sqrt{3}} \left(27 - 12y^2 + y^4 \right) dy$
= $\pi \left[27y - 4y^3 + \frac{1}{5}y^5 \right]_{0}^{\sqrt{3}}$
= $\pi \left(27\sqrt{3} - 4 \cdot (\sqrt{3})^3 + \frac{1}{5}(\sqrt{3})^5 \right)$
= $\frac{84\pi}{5}$.

Problem 15

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$y = x,$$
$$y = 3,$$
$$x = 0$$

about the line y = 4.

Solution. We are revolving about a horizontal line, so we must integrate in the x direction and make vertical slices.

The inner radius goes from y = 4 to y = 3, so $R_1 = 1$. The outer radius goes from y = 4 to y = x, so $R_2 = 4 - x$. The extremities are from x = 0 to x = 3. The volume is

$$V = \int_0^3 \pi \left((4-x)^2 - 1^2 \right) dx$$

= $\pi \int_0^3 \left(15 - 8x + x^2 \right) dx$
= $\pi \left[15x - 4x^2 + \frac{1}{3}x^3 \right]_0^3$
= $\pi (45 - 36 + 9)$
= 18π .

Problem 20

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$y = 3 - x,$$

 $y = 0,$
 $y = 2,$
 $x = 0$

about the line x = 5.

Solution. We are revolving about a vertical line, so we must integrate in the y direction and make horizontal slices.

The inner radius goes from x = 5 to x = 3 - y, so $R_1 = 5 - (3 - y) = y + 2$. The outer radius goes from x = 5 to x = 0, so $R_2 = 5$. The extremities are from y = 0 to y = 2. The volume is

$$V = \int_0^2 \pi \left(5^2 - (y+2)^2 \right) dy$$

= $\pi \int_0^2 \left(21 - 4y - y^2 \right) dy$
= $\pi \left[21y - 2y^2 - \frac{1}{3}y^3 \right]_0^2$
= $\pi \left(42 - 8 - \frac{8}{3} \right)$
= $\frac{94\pi}{3}$.

Problem 21

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$x = y^2,$$
$$x = 4$$

about the line x = 5.

Solution. We are revolving about a vertical line, so we must integrate in the y direction and make horizontal slices.

The inner radius goes from x = 5 to x = 4, so $R_1 = 1$. The outer radius goes from x = 5 to $x = y^2$, so $R_2 = 5 - y^2$. The extremities are from y = 0 to $y = \sqrt{4} = 2$. The

volume is

$$V = \int_0^2 \pi \left((5 - y^2)^2 - 1 \right) dy$$

= $\pi \int_0^2 \left(24 - 10y^2 + y^4 \right) dy$
= $\pi \left[24y - \frac{10}{3}y^3 + \frac{1}{5}y^5 \right]_0^2$
= $\pi \left(48 - \frac{80}{3} + \frac{32}{5} \right)$
= $\frac{832\pi}{15}$.

Problem 29

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$y = x^{2} + 1,$$

$$y = -x^{2} + 2x + 5,$$

$$x = 0,$$

$$x = 3$$

about the x-axis

Solution. The graph is

We are revolving about a horizontal line, so we must integrate in the x direction and make vertical slices. Furthermore, we see from the graph that the upper and lower function switch at x = 2, so we must set up two integrals.

In the first integral, the inner radius goes from y = 0 to $y = x^2 + 1$, so $R_1 = x^2 + 1$. The outer radius goes from y = 0 to $y = -x^2 + 2x + 5$, so $R_2 = -x^2 + 2x + 5$. The extremities are from x = 0 to x = 2. The first volume is

$$V_{1} = \int_{0}^{2} \pi \left((-x^{2} + 2x + 5)^{2} - (x^{2} + 1)^{2} \right) dx$$

= $\pi \int_{0}^{2} \left(-4x^{3} - 8x^{2} + 20x + 24 \right) dx$
= $\pi \left[-x^{4} - \frac{8}{3}x^{3} + 10x^{2} + 24x \right]_{0}^{2}$
= $\pi \left(-16 - \frac{64}{3} + 40 + 48 \right)$
= $\frac{152\pi}{3}$.

In the second integral, the inner radius goes from y = 0 to $y = -x^2 + 2x + 5$, so $R_1 = -x^2 + 2x + 5$. The outer radius goes from y = 0 to $y = x^2 + 1$, so $R_2 = x^2 + 1$. The extremities are from x = 2 to x = 3. The second volume is

$$V_{2} = \int_{2}^{3} \pi \left((x^{2} + 1)^{2} - (-x^{2} + 2x + 5)^{2} \right) dx$$

$$= \pi \int_{2}^{3} \left(4x^{3} + 8x^{2} - 20x - 24 \right) dx$$

$$= \pi \left[x^{4} + \frac{8}{3}x^{3} - 10x^{2} - 24x \right]_{2}^{3}$$

$$= \pi \left((81 + 72 - 90 - 72) - \left(16 + \frac{64}{3} - 40 - 48 \right) \right)$$

$$= \pi \left(-9 + \frac{152}{3} \right)$$

$$= \frac{125\pi}{3}.$$

Thus, the combined volume is

$$V = V_1 + V_2$$

= $\frac{152\pi}{3} + \frac{125\pi}{3}$
= $\frac{277\pi}{3}$.

Problem 30

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$y = \sqrt{x},$$

$$y = -\frac{1}{2}x + 4$$

$$x = 0,$$

$$x = 8$$

,

about the x-axis

Solution. The graph is

We are revolving about a horizontal line, so we must integrate in the x direction and make vertical slices. Furthermore, we see from the graph that the upper and lower function switch at x = 4, so we must set up two integrals.

In the first integral, the inner radius goes from y = 0 to $y = \sqrt{x}$, so $R_1 = \sqrt{x}$. The outer radius goes from y = 0 to $y = -\frac{1}{2}x + 4$, so $R_2 = -\frac{1}{2}x + 4$. The extremities are from x = 0 to x = 4. The first volume is

$$V_{1} = \int_{0}^{4} \pi \left((-\frac{1}{2}x + 4)^{2} - (\sqrt{x})^{2} \right) dx$$
$$= \pi \int_{0}^{4} \left(\frac{1}{4}x^{2} - 5x + 16 \right) dx$$
$$= \pi \left[\frac{1}{12}x^{3} - \frac{5}{2}x^{2} + 16x \right]_{0}^{4}$$
$$= \pi \left(\frac{16}{3} - 40 + 64 \right)$$
$$= \frac{88\pi}{3}$$

In the second integral, the inner radius goes from y = 0 to $y = -x^2 + 2x + 5$, so $R_1 = -x^2 + 2x + 5$. The outer radius goes from y = 0 to $y = x^2 + 1$, so $R_2 = x^2 + 1$. The extremities are from x = 4 to x = 8. The second volume is

$$\begin{aligned} V_2 &= \int_4^8 \pi \left((\sqrt{x})^2 - (-\frac{1}{2}x + 4)^2 \right) \, dx \\ &= \pi \int_4^8 \left(-\frac{1}{4}x^2 + 5x - 16 \right) \, dx \\ &= \pi \left[-\frac{1}{12}x^3 + \frac{5}{2}x^2 - 16x \right]_4^8 \\ &= \pi \left(\left(-\frac{128}{3} + 160 - 128 \right) - \left(-\frac{16}{3} + 40 - 64 \right) \right) \\ &= \pi \left(-\frac{32}{3} + \frac{88}{3} \right) \\ &= \frac{56\pi}{3}. \end{aligned}$$

Thus, the combined volume is

$$V = V_1 + V_2$$

= $\frac{88\pi}{3} + \frac{56\pi}{3}$
= $\frac{144\pi}{3}$
= 48π .

Problem 41

Problem. Find the volume of the solid generated by rotating region R_1 (see diagram) about the line x = 0.

Solution. The inner radius is $R_1 = 1 - x$ and the outer radius is $R_2 = 1$. The extremities are x = 0 and x = 1. The volume is

$$V = \int_0^1 \pi \left(1 - (1 - x)^2 \right) dx$$

= $\pi \int_0^1 \left(2x - x^2 \right) dx$
= $\pi \left[x^2 - \frac{1}{3} x^3 \right]_0^1$
= $\pi \left(1 - \frac{1}{3} \right)$
= $\frac{2\pi}{3}$.

Problem 45

Problem. Find the volume of the solid generated by rotating region R_3 (see diagram) about the line x = 0.

Solution. The inner radius is $R_1 = 0$ and the outer radius is $R_2 = x^2$. The extremities are x = 0 and x = 1. Because $R_1 = 0$, this is the disk method. The volume is

$$V = \int_0^1 \pi \left((x^2)^2 \right) dx$$
$$= \pi \int_0^1 x^4 dx$$
$$= \pi \left[\frac{1}{5} x^5 \right]_0^1$$
$$= \frac{\pi}{5}.$$

Problem 47

Problem. Find the volume of the solid generated by rotating region R_2 (see diagram) about the line x = 0.

Solution. Having worked problems 41 and 45, a quick way to get this volume is to subtract the other two volumes from the volume of all three regions rotated about the x-axis. That solid is a cylinder of radius 1 and height 1, so its volume is π . Then the volume of region R_2 rotated must be

$$V = \pi - \frac{2\pi}{3} - \frac{\pi}{5} = \frac{2\pi}{15}.$$

Let's use the washer method and see whether we get the same answer. The inner radius is $R_1 = x^2$ and the outer radius is $R_2 = x$. The extremities are x = 0 and x = 1. The volume is

$$V = \int_0^1 \pi \left(x^2 - (x^2)^2 \right) dx$$

= $\pi \int_0^1 \left(x^2 - x^4 \right) dx$
= $\pi \left[\frac{1}{3} x^3 - \frac{1}{5} x^5 \right]_0^1$
= $\frac{2\pi}{15}$.

Yep.