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Problem 5

Problem. Set up and evaluate the integral that gives the volume of the solid formed
by revolving the region bounded by y = 2%, y = 2° about the z-axis.

Solution. The inner radius is R;(z) = z° and the outer radius is Ry(x) = 2%, The

extremities are x = 0 and x = 1. So the volume is

V= /0 7 ((2°)? = (2°)%) du
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Problem 6

Problem. Set up and evaluate the integral that gives the volume of the solid formed
2

by revolving the region bounded by y =2, y =4 — % about the z-axis.
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Solution. The inner radius is Ry (z) = 2 and the outer radius is Ry(z) = 4 — T The



extremities are x = —3 and x = 3. So the volume is
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Problem 11(b)

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations

about the y-axis.

Solution. Because we are revolving about the y-axis, we should write our functions

as functions of y. So we have z = y?. Now, the inner radius is R;(y) = y* and the



outer radius is Ry(y) = 3. The extremities are y = 0 and y = v/3. So the volume is

Problem 11(d)

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations

y =V,
=0,
=3

about the line 2 = 6.

Solution. The inner radius is from z = 6 to x = 3, so R;(y) = 6 —3 = 3 and the outer

radius is Ry(y) = 6 — y?. The extremities are y = 0 and y = v/3. The volume is
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Problem 15

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations

y=2x,
Yy =9,
z=20

about the line y = 4.

Solution. We are revolving about a horizontal line, so we must integrate in the x
direction and make vertical slices.

The inner radius goes from y = 4 to y = 3, so R; = 1. The outer radius goes from
y=4toy=uxs0 Ry =4 —x. The extremities are from x = 0 to x = 3. The volume

V:/ng((4—x)2—12) dz
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Problem 20

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations

y:3_$7
y =0,
y=2,
xr =

about the line z = 5.



Solution. We are revolving about a vertical line, so we must integrate in the y direction
and make horizontal slices.

The inner radius goes from z =5tor =3 —y,s0 By =5— (3 —y) =y + 2. The
outer radius goes from x =5 to x = 0, so Ry = 5. The extremities are from y = 0 to

y = 2. The volume is
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Problem 21

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations

about the line z = 5.

Solution. We are revolving about a vertical line, so we must integrate in the y direction
and make horizontal slices.

The inner radius goes from z = 5 to = 4, so R; = 1. The outer radius goes from
z=D5t0x=y? s0 Ry =5 —y? The extremities are from y = 0 to y = v/4 = 2. The



volume is
2
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Problem 29

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations

y=a"+1,
y=—2>+2x+5,
xz =0,

T =3

about the z-axis

Solution. The graph is

—
We are revolving about a horizontal line, so we must integrate in the x direction and

make vertical slices. Furthermore, we see from the graph that the upper and lower

function switch at x = 2, so we must set up two integrals.
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In the first integral, the inner radius goes fromy = 0toy = 22 +1, so R, = 22+ 1.
The outer radius goes from y = 0 to y = —2? + 22 + 5, so Ry = —a? + 2x + 5. The

extremities are from x = 0 to £ = 2. The first volume is
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In the second integral, the inner radius goes from y = 0 to y = —? 4+ 22 + 5, so
Ry = —2? 4+ 22 + 5. The outer radius goes from y = 0 toy = 22 + 1, so Ry = 22 + 1.

The extremities are from z = 2 to x = 3. The second volume is
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Thus, the combined volume is

V=Vi+V,
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Problem 30

Problem. Find the volume of the solid generated by revolving the region bounded by

the graphs of the equations

about the z-axis

Solution. The graph is

1
= —— 4
Y 256""7
z =0,
=28

We are revolving about a horizontal line, so we must integrate in the x direction and

make vertical slices. Furthermore, we see from the graph that the upper and lower

function switch at x = 4, so we must set up two integrals.

In the first integral, the inner radius goes from y = 0 to y = /x, so Ry = /.

The outer radius goes from y =0 to y = —%x +4,s0 Ry = —%x + 4. The extremities



are from z = 0 to x = 4. The first volume is
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In the second integral, the inner radius goes from y = 0 to y = —22 4+ 22 + 5, so

Ry = —2? 4+ 2x + 5. The outer radius goes from y = 0 to y = 22 + 1, so Ry = 2? + 1.

The extremities are from z = 4 to x = 8. The second volume is
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Thus, the combined volume is
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= 487.



Problem 41

Problem. Find the volume of the solid generated by rotating region R; (see diagram)

about the line z = 0.

Solution. The inner radius is By = 1 — x and the outer radius is Ry = 1. The

extremities are £ = 0 and = 1. The volume is

V:/Olw(l—(l—x)Q) dx
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Problem 45

Problem. Find the volume of the solid generated by rotating region Rj (see diagram)

about the line z = 0.

Solution. The inner radius is R; = 0 and the outer radius is Ry = 2. The extremities

are r = 0 and x = 1. Because R, = 0, this is the disk method. The volume is

Problem 47

Problem. Find the volume of the solid generated by rotating region R, (see diagram)

about the line x = 0.
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Solution. Having worked problems 41 and 45, a quick way to get this volume is to
subtract the other two volumes from the volume of all three regions rotated about
the z-axis. That solid is a cylinder of radius 1 and height 1, so its volume is 7. Then

the volume of region R, rotated must be
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Let’s use the washer method and see whether we get the same answer. The inner
radius is R; = 22 and the outer radius is Ry = z. The extremities are x = 0 and

2 = 1. The volume is

Yep.
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