Tuesday, September 29, 2015

Page 453

Problem 5

Problem. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by $y=x^{2}, \quad y=x^{5}$ about the x-axis.
Solution. The inner radius is $R_{1}(x)=x^{5}$ and the outer radius is $R_{2}(x)=x^{2}$. The extremities are $x=0$ and $x=1$. So the volume is

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left(\left(x^{2}\right)^{2}-\left(x^{5}\right)^{2}\right) d x \\
& =\pi \int_{0}^{1}\left(x^{4}-x^{10}\right) d x \\
& =\pi\left[\frac{1}{5} x^{5}-\frac{1}{11} x^{11}\right]_{0}^{1} \\
& =\pi\left(\frac{1}{5}-\frac{1}{11}\right) \\
& =\frac{6 \pi}{55}
\end{aligned}
$$

Problem 6

Problem. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by $y=2, \quad y=4-\frac{x^{2}}{4}$ about the x-axis.
Solution. The inner radius is $R_{1}(x)=2$ and the outer radius is $R_{2}(x)=4-\frac{x^{2}}{4}$. The
extremities are $x=-3$ and $x=3$. So the volume is

$$
\begin{aligned}
V & =\int_{-3}^{3} \pi\left(\left(4-\frac{x^{2}}{4}\right)^{2}-2^{2}\right) d x \\
& =\pi \int_{-3}^{3}\left(\left(16-2 x^{2}+\frac{x^{4}}{16}\right)-4\right) d x \\
& =\pi \int_{-3}^{3}\left(12-2 x^{2}+\frac{x^{4}}{16}\right) d x \\
& =\pi\left[12 x-\frac{2}{3} x^{3}+\frac{1}{80} x^{5}\right]_{-3}^{3} \\
& =\pi\left[\left(36-\frac{2}{3} \cdot 3^{3}+\frac{1}{80} \cdot 3^{5}\right)-\left(12 x-\frac{2}{3}(-3)^{3}+\frac{1}{80}(-3)^{5}\right)\right] \\
& =\pi\left[\left(18+\frac{243}{80}\right)-\left(-18-\frac{243}{80}\right)\right] \\
& =\pi\left(36+\frac{486}{80}\right) \\
& =\frac{1683 \pi}{40} .
\end{aligned}
$$

Problem 11(b)

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=\sqrt{x} \\
& y=0, \\
& x=3
\end{aligned}
$$

about the y-axis.
Solution. Because we are revolving about the y-axis, we should write our functions as functions of y. So we have $x=y^{2}$. Now, the inner radius is $R_{1}(y)=y^{2}$ and the
outer radius is $R_{2}(y)=3$. The extremities are $y=0$ and $y=\sqrt{3}$. So the volume is

$$
\begin{aligned}
V & =\int_{0}^{\sqrt{3}} \pi\left(3^{2}-\left(y^{2}\right)^{2}\right) d y \\
& =\pi \int_{0}^{\sqrt{3}}\left(9-y^{4}\right) d y \\
& =\pi\left[9 y-\frac{1}{5} y^{5}\right]_{0}^{\sqrt{3}} \\
& =\pi\left(9 \sqrt{3}-\frac{1}{5} \cdot 9 \sqrt{3}\right) \\
& =\frac{36 \pi}{5}
\end{aligned}
$$

Problem 11(d)

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=\sqrt{x} \\
& y=0 \\
& x=3
\end{aligned}
$$

about the line $x=6$.
Solution. The inner radius is from $x=6$ to $x=3$, so $R_{1}(y)=6-3=3$ and the outer radius is $R_{2}(y)=6-y^{2}$. The extremities are $y=0$ and $y=\sqrt{3}$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{\sqrt{3}} \pi\left(\left(6-y^{2}\right)^{2}-3^{2}\right) d y \\
& =\pi \int_{0}^{\sqrt{3}}\left(27-12 y^{2}+y^{4}\right) d y \\
& =\pi\left[27 y-4 y^{3}+\frac{1}{5} y^{5}\right]_{0}^{\sqrt{3}} \\
& =\pi\left(27 \sqrt{3}-4 \cdot(\sqrt{3})^{3}+\frac{1}{5}(\sqrt{3})^{5}\right) \\
& =\frac{84 \pi}{5}
\end{aligned}
$$

Problem 15

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=x, \\
& y=3, \\
& x=0
\end{aligned}
$$

about the line $y=4$.
Solution. We are revolving about a horizontal line, so we must integrate in the x direction and make vertical slices.

The inner radius goes from $y=4$ to $y=3$, so $R_{1}=1$. The outer radius goes from $y=4$ to $y=x$, so $R_{2}=4-x$. The extremities are from $x=0$ to $x=3$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{3} \pi\left((4-x)^{2}-1^{2}\right) d x \\
& =\pi \int_{0}^{3}\left(15-8 x+x^{2}\right) d x \\
& =\pi\left[15 x-4 x^{2}+\frac{1}{3} x^{3}\right]_{0}^{3} \\
& =\pi(45-36+9) \\
& =18 \pi
\end{aligned}
$$

Problem 20

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=3-x, \\
& y=0, \\
& y=2, \\
& x=0
\end{aligned}
$$

about the line $x=5$.

Solution. We are revolving about a vertical line, so we must integrate in the y direction and make horizontal slices.

The inner radius goes from $x=5$ to $x=3-y$, so $R_{1}=5-(3-y)=y+2$. The outer radius goes from $x=5$ to $x=0$, so $R_{2}=5$. The extremities are from $y=0$ to $y=2$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{2} \pi\left(5^{2}-(y+2)^{2}\right) d y \\
& =\pi \int_{0}^{2}\left(21-4 y-y^{2}\right) d y \\
& =\pi\left[21 y-2 y^{2}-\frac{1}{3} y^{3}\right]_{0}^{2} \\
& =\pi\left(42-8-\frac{8}{3}\right) \\
& =\frac{94 \pi}{3}
\end{aligned}
$$

Problem 21

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& x=y^{2}, \\
& x=4
\end{aligned}
$$

about the line $x=5$.
Solution. We are revolving about a vertical line, so we must integrate in the y direction and make horizontal slices.

The inner radius goes from $x=5$ to $x=4$, so $R_{1}=1$. The outer radius goes from $x=5$ to $x=y^{2}$, so $R_{2}=5-y^{2}$. The extremities are from $y=0$ to $y=\sqrt{4}=2$. The
volume is

$$
\begin{aligned}
V & =\int_{0}^{2} \pi\left(\left(5-y^{2}\right)^{2}-1\right) d y \\
& =\pi \int_{0}^{2}\left(24-10 y^{2}+y^{4}\right) d y \\
& =\pi\left[24 y-\frac{10}{3} y^{3}+\frac{1}{5} y^{5}\right]_{0}^{2} \\
& =\pi\left(48-\frac{80}{3}+\frac{32}{5}\right) \\
& =\frac{832 \pi}{15}
\end{aligned}
$$

Problem 29

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=x^{2}+1 \\
& y=-x^{2}+2 x+5 \\
& x=0 \\
& x=3
\end{aligned}
$$

about the x-axis
Solution. The graph is

We are revolving about a horizontal line, so we must integrate in the x direction and make vertical slices. Furthermore, we see from the graph that the upper and lower function switch at $x=2$, so we must set up two integrals.

In the first integral, the inner radius goes from $y=0$ to $y=x^{2}+1$, so $R_{1}=x^{2}+1$. The outer radius goes from $y=0$ to $y=-x^{2}+2 x+5$, so $R_{2}=-x^{2}+2 x+5$. The extremities are from $x=0$ to $x=2$. The first volume is

$$
\begin{aligned}
V_{1} & =\int_{0}^{2} \pi\left(\left(-x^{2}+2 x+5\right)^{2}-\left(x^{2}+1\right)^{2}\right) d x \\
& =\pi \int_{0}^{2}\left(-4 x^{3}-8 x^{2}+20 x+24\right) d x \\
& =\pi\left[-x^{4}-\frac{8}{3} x^{3}+10 x^{2}+24 x\right]_{0}^{2} \\
& =\pi\left(-16-\frac{64}{3}+40+48\right) \\
& =\frac{152 \pi}{3}
\end{aligned}
$$

In the second integral, the inner radius goes from $y=0$ to $y=-x^{2}+2 x+5$, so $R_{1}=-x^{2}+2 x+5$. The outer radius goes from $y=0$ to $y=x^{2}+1$, so $R_{2}=x^{2}+1$. The extremities are from $x=2$ to $x=3$. The second volume is

$$
\begin{aligned}
V_{2} & =\int_{2}^{3} \pi\left(\left(x^{2}+1\right)^{2}-\left(-x^{2}+2 x+5\right)^{2}\right) d x \\
& =\pi \int_{2}^{3}\left(4 x^{3}+8 x^{2}-20 x-24\right) d x \\
& =\pi\left[x^{4}+\frac{8}{3} x^{3}-10 x^{2}-24 x\right]_{2}^{3} \\
& =\pi\left((81+72-90-72)-\left(16+\frac{64}{3}-40-48\right)\right) \\
& =\pi\left(-9+\frac{152}{3}\right) \\
& =\frac{125 \pi}{3}
\end{aligned}
$$

Thus, the combined volume is

$$
\begin{aligned}
V & =V_{1}+V_{2} \\
& =\frac{152 \pi}{3}+\frac{125 \pi}{3} \\
& =\frac{277 \pi}{3} .
\end{aligned}
$$

Problem 30

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=\sqrt{x} \\
& y=-\frac{1}{2} x+4, \\
& x=0 \\
& x=8
\end{aligned}
$$

about the x-axis
Solution. The graph is

We are revolving about a horizontal line, so we must integrate in the x direction and make vertical slices. Furthermore, we see from the graph that the upper and lower function switch at $x=4$, so we must set up two integrals.

In the first integral, the inner radius goes from $y=0$ to $y=\sqrt{x}$, so $R_{1}=\sqrt{x}$. The outer radius goes from $y=0$ to $y=-\frac{1}{2} x+4$, so $R_{2}=-\frac{1}{2} x+4$. The extremities
are from $x=0$ to $x=4$. The first volume is

$$
\begin{aligned}
V_{1} & =\int_{0}^{4} \pi\left(\left(-\frac{1}{2} x+4\right)^{2}-(\sqrt{x})^{2}\right) d x \\
& =\pi \int_{0}^{4}\left(\frac{1}{4} x^{2}-5 x+16\right) d x \\
& =\pi\left[\frac{1}{12} x^{3}-\frac{5}{2} x^{2}+16 x\right]_{0}^{4} \\
& =\pi\left(\frac{16}{3}-40+64\right) \\
& =\frac{88 \pi}{3}
\end{aligned}
$$

In the second integral, the inner radius goes from $y=0$ to $y=-x^{2}+2 x+5$, so $R_{1}=-x^{2}+2 x+5$. The outer radius goes from $y=0$ to $y=x^{2}+1$, so $R_{2}=x^{2}+1$. The extremities are from $x=4$ to $x=8$. The second volume is

$$
\begin{aligned}
V_{2} & =\int_{4}^{8} \pi\left((\sqrt{x})^{2}-\left(-\frac{1}{2} x+4\right)^{2}\right) d x \\
& =\pi \int_{4}^{8}\left(-\frac{1}{4} x^{2}+5 x-16\right) d x \\
& =\pi\left[-\frac{1}{12} x^{3}+\frac{5}{2} x^{2}-16 x\right]_{4}^{8} \\
& =\pi\left(\left(-\frac{128}{3}+160-128\right)-\left(-\frac{16}{3}+40-64\right)\right) \\
& =\pi\left(-\frac{32}{3}+\frac{88}{3}\right) \\
& =\frac{56 \pi}{3}
\end{aligned}
$$

Thus, the combined volume is

$$
\begin{aligned}
V & =V_{1}+V_{2} \\
& =\frac{88 \pi}{3}+\frac{56 \pi}{3} \\
& =\frac{144 \pi}{3} \\
& =48 \pi .
\end{aligned}
$$

Problem 41

Problem. Find the volume of the solid generated by rotating region R_{1} (see diagram) about the line $x=0$.

Solution. The inner radius is $R_{1}=1-x$ and the outer radius is $R_{2}=1$. The extremities are $x=0$ and $x=1$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left(1-(1-x)^{2}\right) d x \\
& =\pi \int_{0}^{1}\left(2 x-x^{2}\right) d x \\
& =\pi\left[x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1} \\
& =\pi\left(1-\frac{1}{3}\right) \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

Problem 45

Problem. Find the volume of the solid generated by rotating region R_{3} (see diagram) about the line $x=0$.

Solution. The inner radius is $R_{1}=0$ and the outer radius is $R_{2}=x^{2}$. The extremities are $x=0$ and $x=1$. Because $R_{1}=0$, this is the disk method. The volume is

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left(\left(x^{2}\right)^{2}\right) d x \\
& =\pi \int_{0}^{1} x^{4} d x \\
& =\pi\left[\frac{1}{5} x^{5}\right]_{0}^{1} \\
& =\frac{\pi}{5}
\end{aligned}
$$

Problem 47

Problem. Find the volume of the solid generated by rotating region R_{2} (see diagram) about the line $x=0$.

Solution. Having worked problems 41 and 45 , a quick way to get this volume is to subtract the other two volumes from the volume of all three regions rotated about the x-axis. That solid is a cylinder of radius 1 and height 1 , so its volume is π. Then the volume of region R_{2} rotated must be

$$
\begin{aligned}
V & =\pi-\frac{2 \pi}{3}-\frac{\pi}{5} \\
& =\frac{2 \pi}{15} .
\end{aligned}
$$

Let's use the washer method and see whether we get the same answer. The inner radius is $R_{1}=x^{2}$ and the outer radius is $R_{2}=x$. The extremities are $x=0$ and $x=1$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left(x^{2}-\left(x^{2}\right)^{2}\right) d x \\
& =\pi \int_{0}^{1}\left(x^{2}-x^{4}\right) d x \\
& =\pi\left[\frac{1}{3} x^{3}-\frac{1}{5} x^{5}\right]_{0}^{1} \\
& =\frac{2 \pi}{15}
\end{aligned}
$$

Yep.

